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Abstract
We study the Landau–Ginzburg (LG) theory mirror to two-dimensional (2D)
N = 2 gauged linear sigma models on toric Calabi–Yau manifolds. We derive
and solve new constraint equations for LG elliptic Calabi–Yau superpotentials
depending on the physical data of dual linear sigma models. In the Calabi–Yau
threefold case, we consider two examples. First, we give the mirror symmetry
of the canonical line bundle over the Hirzebruch surfaces Fn. Second, we
find a special geometry with the affine so(8) Lie algebra toric data extending
the geometry of elliptically fibred K3. This geometry leads to a pure N =
1 six-dimensional SO(8) gauge model from the F-theory compactification.
For Calabi–Yau fourfolds, we give a new algebraic realization for ADE
hypersurfaces.

PACS numbers: 11.25.−w, 02.40.Sf, 11.30.Pb

1. Introduction

One of the most beautiful properties of type II superstrings is that the type IIA string
propagating on a Calabi–Yau M may behave identically with the type IIB string propagating
on a different Calabi–Yau W . In this way, the complex (Kahler) structure moduli space of
M is identical to the Kahler (complex) structure moduli space of W . The pairs of manifolds
satisfying this map are known as mirror pairs and this string duality is called mirror symmetry
[1–3]. This symmetry also plays an important role in the geometric engineering of 4D N = 2
quantum field theories (QFT), embedded in type II superstring theories on singular Calabi–Yau
threefolds, where this map can be used to obtain exact results for the type IIA superstring
Coulomb branch [4–8].

Recently, mirror symmetry has been used in the context of 2D superconformal field
theories with boundaries involving N = 2 sigma models (SM) and Landau–Ginzburg (LG)
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theories. It was shown in [9–11] how these models can be related by mirror symmetry. This
leads to the map between A-type branes, wrapping special Lagrangian submanifolds, in the
sigma model approach and B-type branes wrapping holomorphic cycles in the context of LG
theories. This link has been a powerful tool in the study of algebraic realizations of Calabi–Yau
manifolds. In particular, elliptic geometries are used in the derivations of non-perturbative
superstring solutions from either D-brane physics or F-theory compactifications [12, 13].

The aim of this paper is to contribute to this programme by deriving new classes of
constraint equations for LG elliptic Calabi–Yau superpotentials using the recent derivation of
mirror symmetry in the toric sigma model. In particular, we find a special elliptic Calabi–Yau
threefold extending the mirror superpotentials of the blow-up of the affine ADE local K3, used
in the geometric engineering of 4D N = 2 superconformal field theories [5, 8]. This involves
the affine so(8) Lie algebra as Mori vectors toric data leading to a new N = 1 SO(8) gauge
model in six dimensions from the point of view of F-theory compactification.

The organization of this paper is as follows. In section 2, we give an overview of
Vafa’s construction of F-theory. Then we study F-theory on Calabi–Yau spaces with elliptic
geometric structures and the role they play in the understanding of the lower dimensional
superstring models. In section 3, we first discuss aspects of the 2D N = 2 linear sigma model.
Second, we study the interplay between this model and toric geometry which plays a crucial
role for us later in this paper. We also introduce mirror symmetry, as in [9–11], to obtain the
LG mirror theory. Then we illustrate the example of elliptic K3 with ADE singularities, to
engineer N = 1 gauge theories in eight dimensions with ADE gauge groups from F-theory
compactifications. In section 4, we consider two examples of the mirror symmetry for the
sigma model on Calabi–Yau threefolds. First, we give the mirror theory of the linear sigma
model on the canonical line bundle over the Hirzebruch surfaces Fn. This geometry recovers
the leading example of F0 studied in the context of the mirror action of Lagrangian D-branes
[11]. Second, we find a special elliptic and K3 fibred Calabi–Yau threefold extending the
elliptic ADE mirror superpotentials to Calabi–Yau threefolds with affine so(8) Lie algebra
toric data. This background space gives, from F-theory compactifications, a new pure N = 1
SO(8) Yang–Mills theory in six dimensions. In section 5, we use the techniques developed
in section 3 to derive a solution for the mirror superpotentials associated with ADE Calabi–
Yau fourfold hypersurfaces. This gives a toric realization of ADE Calabi–Yau fourfold
hypersurfaces studied in [14] in the context of derivations of 2D superconformal field theories
from superstring compactifications. In section 6 we give our conclusion.

2. Generalities of F-theory

2.1. Review of Vafa’s construction of F-theory

F-theory defines non-perturbative vacua of type IIB superstring theory in which the dilaton
(φ) and the axion (χ) fields of the superstring are not constants. These fields are known as the
complex string coupling moduli τIIB = χ + ie−φ which is interpreted as the complex parameter
of an elliptic curve then leading to non-pertubative vacua of the type IIB superstring theory in
a 12-dimensional spacetime [12]. F-theory may also be defined with the help of superstring
dualities. As we will see later on, F-theory on elliptically fibred Calabi–Yau spaces may also
be defined in terms of dual superstring models, but let us first review briefly some features
of this theory. Type IIB is a ten-dimensional theory of closed superstrings with chiral N = 2
supersymmetry. The bosonic fields of the corresponding low-energy field theory are the
graviton gµν, the antisymmetric tensor Bµν and the dilaton φ coming from the NS–NS sector
and the axion χ , the antisymmetric tensor fields B̃µν and the self dual four form Dµνσλ coming
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from the R–R sector. As we see, there is no non-Abelian gauge field in the massless spectrum
of the type IIB superstring theory but instead it contains Dp-branes solitonic objects, with p =
−1, 1, 3, 5, 7 and 9, on which the Aµ gauge fields of open-string field theory are based [15].
These extended objects are non-perturbative solutions playing a crucial role in string dualities,
and in the embedding of QFTs in superstring models by using either the Hanany–Witten
method [16, 17] or the geometric engineering approach [4–8, 18]. Type IIB superstring theory
has a non-perturbative SL(2, Z) symmetry for which the fields gµν and Dµνσλ are invariant
but the complex string coupling τIIB = χ + ie−φ and the doublet (Bµν, B̃µν) of two forms are
believed to transform as [19]:

τIIB → aτIIB + b

cτIIB + d
a, b, c, d ∈ Z (2.1)

and (
Bµν

B̃µν

)
=
(
a b

c d

)(
Bµν

B̃µν

)
(2.2)

where the integers a, b, c and d are such that ad − bc = 1.
Following Vafa [12], one may interpret the complex field τIIB as the complex structure

τT 2 of an extra torus T 2:

τIIB = χ + ie−φ = τT 2 . (2.3)

This extra torus T 2 combines with the ten spacetime dimensions to give a 12-dimensional
theory. From this viewpoint, 10D type IIB superstring theory may be seen as the
compactification of F-theory on the elliptic curve T 2:

Type IIB superstring theory∼ F-theory

T 2
. (2.4)

2.2. F-theory compactifications and string dualities

Here we study the F-theory compactifications and their connections to string models. To do
so, we consider first a (n + 1)-dimensional Calabi–Yau manifold Wn+1 which has an elliptic
fibration over an n-dimensional complex base space Bn

y2 = x3 + f (zi)x + g(zi) zi ∈ Bn (2.5)

where zi are the local coordinates of Bn. F-theory compactification on Wn+1 is equivalent to
the type IIB superstring theory on Bn with the varying complex string coupling τIIB:

χ(zi) + ie−φ(zi) = τT 2(zi). (2.6)

The positions of the degenerate elliptic fibres on Bn are given by the solution of the following
equation:

δ = 27g2(zi) + 4f 3(zi) = 0 (2.7)

where δ is the discriminant of the elliptic fibration. Recall that the well-known example of
F-theory compactification is the eight-dimensional model [12, 13]. This is obtained by the
compactification on the elliptically fibred K3 surface

y2 = x3 + f (z)x + g(z) z ∈ P1 (2.8)

In this case, the functions f and g are polynomials of degree 8 and 12 in z respectively,

f (z) =
8∑
i=0

aiz
i

(2.9)

g(z) =
12∑
i=0

biz
i.
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The complex structure τT 2 is now a function of one variable z (local coordinate of P1) which
varies over the P1 base of elliptically fibred K3. Equation (2.7) has generically 24 singular
points corresponding to the neutrality condition of the discriminant δ. These singularities have
a remarkable physical interpretation. To each of the 24 points is associated the location of a
D7-brane of non-perturbative type IIB superstring theory.

2.2.1. F-theory/heterotic duality. F-theory on elliptically fibred K3 leads to new type IIB
superstring theory solutions in eight dimensions. This model is conjectured to be dual to the
heterotic superstring theory on T 2,

F-theory

K3
∼ heterotic superstring

T 2
(2.10)

with the heterotic string coupling constant ghs being given by the size of the P1 base of
elliptically fibred K3. This eight-dimensional model can be further compactified to lower
dimensions by fibring both sides over the same complex base Bn−1 using the so-called adiabatic
principle [20]. In this way, the above eight-dimensional duality becomes [21–23]

F-theory

Wn+1
∼ heterotic superstring

Zn
(2.11)

where Wn+1 has K3 fibration over Bn−1 (with K3 = W2). It also has an elliptic fibration,
inherited from the elliptic fibration of W2, over Bn, while the heterotic Calabi–Yau manifold
Zn is an elliptic fibration over the base Bn−1. For example, if we fibre eight-dimensional data
over an extra torus B1 = T 2, then the resulting duality becomes a duality between F-theory
on K3 × T 2 and heterotic string on T 4. The latter is known to be dual to type IIA string on
K3 [24–28]. Thus an interesting superstring model in lower dimensions can be obtained from
F-theory compactifications on elliptically fibred Calabi–Yau manifolds. This gives a pure
geometric interpretation of the perturbative superstring spectrum and determines at the same
time the non-perturbative dynamics associated with D-brane physics in type II superstring
theories or with a singular bundle of N = 1 superstring models. In what follows we shall use
the sigma model/LG mirror correspondence to develop a new algebraic realization of elliptic
Calabi–Yau manifolds involving both elliptic fibration and K3 fibration. Special attention will
be given to LG elliptic Calabi–Yau three- to fourfold superpotentials.

3. Mirror symmetry in 2D N = 2 field theory

3.1. 2D N = 2 sigma model

In this section we study the gauged linear sigma model introduced by Witten as a field-theoretic
description of Calabi–Yau manifolds [29]. Then we discuss the corresponding LG mirror
theory studied in [9–11]. For simplicity, we consider an Abelian gauge groupU(1)r described
by superfields Va (a = 1, . . . , r). We assume that there are k charged chiral superfields
$i(i = 1, . . . , k) of vector charges qai (a = 1, . . . , r) [29, 30]. The Lagrangian of this model,
in terms of superfield language, reads as

L =
∫

d2x d4θ

k∑
i=1

$̄i e2qai Va$i −
∑
a

ρa

∫
d2x d4θVa +

(∫
d2x d2θW($) + h.c.

)
. (3.1)

Integrating with respect to θ ,we find the superpotential energy for the dynamical scalar fieldsφi

U(φ) =
k∑
i=1

∣∣∣∣∂W∂φi
∣∣∣∣
2

+
r∑
a=1

1

2e2
a

D2
a (3.2)
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where W is the superpotential and ea are the gauge coupling parameters. Da are known as
D-terms:

D2
a =

r∑
a=1

e2
i

(
k∑
i=1

qai |φi |2 − ρa

)2

(3.3)

where the ρa parameters are Fayet–Illiopoulos (FI) terms which with the θ angles give
complexified Kahler parameters:

ta = ρa + iθa a = 1, . . . , r. (3.4)

We next suppose that there is no superpotential for the charged matter

W(φ) = 0.

Thus, the minimum potential energy comes only from the D-terms. The vanishing of these
terms gives us

k∑
i=1

qai |φi|2 = ρa. (3.5)

Dividing the space of solutions (which will be called M) of (3.5) by the complexified gauge
group U(1)r

φi → eiqai γaφi (3.6)

we find the following complex space

Ck

C∗r (3.7)

where Ck corresponds to the complex coordinates zi and the C∗ actions are given by

zi → λq
a
i zi i = 1, 2, . . . , k a = 1, 2, . . . , r. (3.8)

For example, if we have a U(1) gauge theory with two chiral fields with charges 1, the classical
moduli space is P1.

The space of solutions (M) we have been describing has a nice geometrical interpretation
in terms of toric geometry1. This has been a beautiful interplay between 2D N = 2 sigma
models and toric geometry [5, 29]. Indeed interpreting the previous (φi) matter fields as
the zi coordinates of (3.7) and the qai quantum charges, under the U(1)r symmetry, should
be interpreted as the Mori vectors of toric geometry language. In this way, the vacuum
space may have a toric diagram0 which consists of k vertices {vi} in the standard lattice Zn,
where n = k − r is the complex dimension of the space of solutions (we are assuming that there
is no toric fibration structure). Every vertex vi corresponds to a matter field (φi) in our 2D
N = 2 sigma model. Since the complex dimension of vacuum space is n, there are r relations
between the k vertices which read as

k∑
i=1

qai vi = 0 a = 1, . . . , r. (3.9)

In this representation, it is worthwhile mentioning the following four points:

1. If the qai are all positive definite, or negative definite, the space of solutions is compact.
However, if there is a mixture of positive and negative qai , the toric target space is non-
compact.

1 For more details on toric geometry, see [31–36].
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2. For qai obeying the neutrality condition

k∑
i=1

qai = 0 a = 1, . . . , r (3.10)

the toric target space is a non-compact Calabi–Yau manifold and the field theory flows in
the infrared to a non-trivial superconformal model [5, 29, 37, 38]. This type of manifold
plays a crucial role in the study of non-perturbative superstring theory compactifications;
in particular, in the geometric engineering of QFTs.

3. If all ρa are zero, then the toric manifold is singular.

4. For all ρa �= 0, we have a smooth toric manifold. In this case the (FI) parameters, which
are given by the Hodge number h1,1(M) or equivalently by the number of U(1) factors, are
interpreted as blow-up parameters of the singularity.

3.2. LG mirror theory

Having introduced the linear sigma model construction, we will now discuss the corresponding
mirror theory. There are different ways one follows to obtain the mirror theory. The latter is
a LG model with Calabi–Yau superpotentials, depending on the number of chiral multiples
and gauge fields of dual theories. A tricky way to write down the equation of the LG mirror
superpotential (dual to the previous sigma model (3.5)), is to introduce in the game k dual
chiral fields Yi to each field in the sigma model such that [9–11]

Re Yi = |φi |2 i = 1, . . . , k. (3.11)

For convenience, we define new variables

xi = e−Yi . (3.12)

The defining equation of the LG mirror superpotential takes the form

k∑
i=1

xi = 0 (3.13)

where the fields xi must satisfy

k∏
i=1

x
qai
i = e−ta a = 1, . . . , r. (3.14)

Recall that the ta are the complexified Kahler parameters of sigma models which now define the
complex structure of LG mirror geometry. The solution of these equations is often described
by (n − 2)-dimensional hypersurfaces. This is not a problem since one can restore the correct
dimension by introducing two auxiliary fields u and v and equation (3.13) becomes

W(xi) =
k∑
i=1

xi = uv. (3.15)

Note that the quadratic term uv does not affect the complex structure of the mirror
superpotential.
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3.3. Elliptic ADE mirror superpotentials

As our first example we consider the LG K3 superpotentials with deformed elliptic ADE
singularities. We start by constructing these geometries, with ADE singularities, as gauged N
= 2 two-dimensional linear sigma models. In general, these are described by a U(1)r+1 gauge
group with (r + 5) chiral multiples φi with qai vector charges specified later on. The elliptic
ADE spaces of classical vacua, in the absence of the sigma model superpotential, are given by

U =
r∑
a=0

e2
a

(
r+5∑
i=1

qai |φi |2 − ρa

)2

a = 0, 1 . . . , r (3.16)

where r is the rank of ADE algebras and the qai are the quantum charges of φi under theU(1)r+1

gauge symmetry, and the details are proportional to the Cartan matrices Kai of the ADE Lie
algebras in question. These vector charges satisfy the condition

∑r+5
i=1 q

a
i = 0 under which the

gauge model flows in the infrared to 2D N = 2 superconformal field theory. The ADE spaces
of classical vacua may be described by a toric diagram0 spanned by (r + 5) vertices

vi = (ni,mi, si) (3.17)

of the standard lattice Z3, where the first entry ni takes either zero or the Dynkin weight of
the adjoint representation of the corresponding Lie algebra. These (r + 5) vertices fulfil the
following (r + 1) relations

r+5∑
i=1

qai vi = 0 a = 0, 1 . . . , r (3.18)

with the Calabi–Yau condition
r+5∑
i=1

qai = 0. (3.19)

Having introduced the toric data of the sigma model construction of the local elliptic ADE K3
surface, we will now apply the mirror symmetry to get the corresponding ADE superpotentials
for LG theory. To write down the algebraic equations of the mirror geometry, we will use
the toric data of the sigma model construction. Indeed, we associate with each vertex vi of
the toric diagram 0 a monomial xni1 x

mi
2 x

si
3 , where x1, x2 and x3 are LG gauge invariant fields

[8, 36]. The superpotentials of the mirror theory associated with the vertices (3.17) are
described by complex 2D Calabi–Yau surfacesW2(ADE)

W2(ADE) =
r+5∑
i=1

aix1
ni x2

mi x3
si = 0 (3.20)

where ai are the complex parameters defining the complex structure of the mirror
superpotentials. Note that only a subset of ai is physical. Recall that the fields xi may
be viewed as gauge invariant under theC∗ action of weighted projective spaces WP3, in which
the elliptic K3 is embedded [5, 8, 36], allowing us to give a homogeneous description of
elliptic ADE series for LG mirror superpotentials. This homogeneous description takes the
form

W2(ADE) = P0(y, x, z) +
∑
i

wiPi(y, x, z) = 0 (3.21)

where (y, x, z,w) are the homogeneous coordinates of WP3(3, 2, 1, η) and where η is an
integer depending on the type of Lie algebra [8, 36]. P0 describes an elliptic curve E in WP2.
In particular, a sextic in WP2(3, 2, 1)

P0 = y2 + x3 + z6 + µxyz = 0 (3.22)
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with µ a complex structure modulus. The number of monomials in Pi is equal to the number
of Dynkin labels equal to i. Equation (3.21) gives the ADE mirror classification of local
elliptically fibred K3 and plays a crucial role in geometric engineering of N = 1 gauge theories
in eight dimensions. Indeed, at a singular limit of F-theory on W2, when the 2-cycles of K3
shrink to zero area, we get enhanced N = 1 ADE gauge symmetries in eight dimensions [21–23,
36, 39]. Recall that the resolution of ADE singular K3 occurring in F-theory compactifications
consists of affine Dynkin diagrams of a chain of 2-cycles with specific intersection numbers
in agreement with the corresponding affine Dynkin index. For illustration, let us present an
example concerning the elliptic affineAn−1 space (for n even). The toric data of this geometry
have four vertices

v0 = (0, 0, 0) v1 = (0, 2, 3) v2 = (0,−1, 0) v3 = (0, 0,−1) (3.23)

describing the elliptic fibre E and n vertices,

v1 = (1, 2, 3) v2i = (1, 2 − i, 3 − i) v2i+1 = (1, 2 − i, 2 − i) i > 0 (3.24)

introduced by the blow-ups. The superpotential of the mirror LG model is

W2(An−1) = (y2 + x3 + z6 + µxyz) + wP1(x, y, z) = 0 (3.25)

where

P1(x, y, z) = anz
n + an−2z

n−2x + an−3z
n−3y + · · · + a0x

n
2 . (3.26)

For completeness we give the toric vertices for others elliptic geometries.
D̂n geometry

v0 = (1, 2, 3) v1 = (1, 1, 1)

vi+1 = (2, 3 − i, 4 − i) i = 1, . . . , n− 3

vn−1 = (
1, 1

2 (6 − ε − n), 1
2 (6 − ε − n)

)
vn = (

1, 1
2 (4 + ε − n), 1

2 (6 + ε − n)
)

ṽn = (0, 0, 0) ṽn+1 = (0,−1, 0) ṽn+2 = (0, 0,−1) ṽn+3 = (0, 2, 3)

q0
i = (−2, 0, 1, 0n−2, 0, 0, 0, 1) q1

i = (0, 1,−2, 1, 0n−4, 0, 0, 0, 0) (3.27)

q2
i = (1, 1,−2, 1, 0n−3,−1, 0, 0, 0) · · ·
qn−1
i (ε = 0) = (0n−2, 1,−2, 0, 0, 0, 1, 0) qn−1

i (ε = 1) = (0n−2, 1,−2, 0,−2, 1, 2, 0)

qni (ε = 0) = (0n−2, 1, 0,−2,−2, 2, 1, 0) qni (ε = 1) = (0n−2, 1, 0,−2, 0, 1, 0, 0)

i = 0, . . . , n + 4

where ε = 0 (1) for n even (odd).
Ê6 (curve E in P2):

v0 = (1,−1, 1) v1 = (1,−1,−1) v2 = (2,−1, 0) v3 = (2,−1,−1)
v4 = (3,−1,−1) v5 = (2, 0,−1) v6 = (1, 1,−1) ṽ7 = (0, 0, 0)
ṽ8 = (0, 2,−1) ṽ9 = (0,−1, 2) ṽ10 = (0,−1,−1)
q0
i = (−2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0) q1

i = (0,−2, 0, 1, 0, 0, 0, 0, 0, 0, 1)
q2
i = (1, 0,−2, 0, 1, 0, 0, 0, 0, 0, 0) q3

i = (0, 1, 0,−2, 1, 0, 0, 0, 0, 0, 0)
q4
i = (0, 0, 1, 1,−2, 1, 0,−1, 0, 0, 0) q5

i = (0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0)
q6
i = (0, 0, 0, 0, 1,−2, 1, 0, 0).

(3.28)



Mirror symmetry and Landau–Ginzburg Calabi–Yau superpotentials in F-theory compactifications 973

Ê7 (curve E in WP 2(1, 1, 2)):

v0 = (1,−2, 1) v1 = (2,−2,−1) v2 = (2,−1, 0) v3 = (3,−2,−1)
v4 = (4,−2,−1) v5 = (3,−1,−1) v6 = (2, 0,−1) v7 = (1, 1,−1)
ṽ8 = (0, 0, 0) ṽ9 = (0, 2,−1) ṽ10 = (0, 0, 1) ṽ11 = (0,−2,−1)
q0
i = (−2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) q1

i = (1,−2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

q2
i = (0, 0,−2, 0, 1, 0, 0, 0, 0, 0, 1, 0) q3

i = (0, 1, 0,−2, 1, 0, 0, 0, 0, 0, 0, 0)
q4
i = (0, 0, 1, 1,−2, 1, 0, 0,−1, 0, 0, 0) q5

i = (0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0)
q6
i = (0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0) q7

i = (0, 0, 0, 0, 0, 0, 1,
−2, 0, 1,−2, 0, 1, 0, 0).

(3.29)

Ê8 (curve E in WP 2(1, 2, 3)):

v0 = (1, 2, 3) v1 = (2, 2, 3) v2 = (3, 1, 1) v3 = (3, 2, 3)
v4 = (4, 2, 3) v5 = (5, 2, 3) v6 = (6, 2, 3) v7 = (4, 1, 2)
v8 = (2, 0, 1) ṽ9 = (0, 0, 0) ṽ10 = (0,−1, 0) ṽ11 = (0, 0,−1)
ṽ12 = (0, 2, 3)

(3.30)

q0
i = (−2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) q1

i = (1,−2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
q2
i = (0, 0,−2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0) q3

i = (0, 1, 0,−2, 1, 0, 0, 0, 0, 0, 0, 0, 0)
q4
i = (0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0, 0) q5

i = (0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0)
q6
i = (0, 0, 1, 0, 0, 1,−2, 1, 0,−1, 0, 0, 0) q7

i = (0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0)
q8
i = (07,−2, 0, 1, 0, 0).

3.4. BCFG models

We conclude this section by noting that the above analysis is also valid for non-simply-laced
BCFG LG mirror geometries of K3. This is based on toric realizations of the standard
techniques of the folding of the Dynkin nodes of ADE graphs which are permuted by outer
automorphism groups [8, 36]. Indeed, starting from the toric data of the ADE simply laced
geometries considered above one gets the constraint equations of the folding of toric vertices
of non-simply laced geometries using the well-known results:

Dn+1/Z2 → Bn A2n−1/Z2 → Cn E6/Z2 → F4 D4/Z2 → G2. (3.31)

4. LG Calabi–Yau threefold superpotentials

In this section we will describe the LG theory mirror to the sigma model on toric Calabi–Yau
threefolds and the role they play in the description of F-theory vacua in six dimensions, and
in particular, the supersymmetric QFTs limit of low effective models of F-theory on singular
Calabi–Yau threefolds. We do not attempt to give a classification, but instead we will consider
two examples. We first study the LG theory mirror to the linear sigma model on the canonical
line bundle over the Hirzebruch surfaces Fn. This geometry recovers the leading example of
F0 studied in the context of the mirror action of Lagrangian D branes [11]. We will see that
the mirror geometry also has an elliptic fibration structure

f (x1, x2) = uv (4.1)

where f (x1, x2) = 0 describes a Riemann surface, x1, x2 are C∗ coordinates and u, v are C
coordinates. Second, we will consider a special mirror geometry extending the K3 mirror
superpotantials with ADE singularities studied in section 3.
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4.1. Elliptic fibration models

Let us start with the first example describing the sigma model on the canonical line bundle
over the Hirzebruch surfaces Fn (n � 0). Recall by the way that the Fn geometries are defined
by a non-trivial fibration of a P1 fibre on a P1 base. These geometries are realized as the
vacuum manifold of the U(1)× U(1) gauge theory with four chiral fields with charges

q
(1)
i = (1, 1, 0,−n)

(4.2)
q
(2)
i = (0, 0, 1, 1).

These surfaces have a nice realization in terms of toric geometry techniques [31]. This is
represented by four vertices in Z2 as follows:

v1 = (1, 0)

v2 = (−1, n)
(4.3)

v3 = (0, 1)

v4 = (0,−1).

These vertices satisfy the following linear toric relations

v1 + v2 + nv4 = 0 v3 + v4 = 0. (4.4)

Note that the Fn surfaces are not Ricci-flat. However, they can be viewed as a part of a local
geometry of a Calabi–Yau manifold, where there are extra dimensions. In particular, if we
embed these surfaces in a Calabi–Yau threefold there is a normal direction corresponding to line
bundles on Fn. The Calabi–Yau condition requires that the normal bundle must be a canonical
line bundle. Thus the canonical line bundles over Fn are local Calabi–Yau threefolds2. These
geometries are used in superstring theory compactifications, in particular, in the geometric
engineering of 4D N = 2 supersymmetric gauge theories, where these background spaces
allow us to rederive the Seiberg–Witten models [40, 41]. Roughly speaking, the canonical
line bundle of Fn surfaces is described by a U(1) × U(1) linear sigma model with five matter
fields φi with two vector charges

q
(1)
i = (1, 1, 0,−n, n− 2)

(4.5)
q
(2)
i = (0, 0, 1, 1,−2).

The D-flatness conditions of this model read as

|φ1|2 + |φ2|2 − n|φ4|2 + (n− 2)|φ5|2 = ρ1 |φ3|2 + |φ4|2 − 2|φ5|2 = ρ2. (4.6)

This classical vacuum has a geometrical realization in terms of the following toric data

5∑
i=1

qai vi = 0
5∑
i=1

qai = 0 (4.7)

where the vertices vi , which are elements of the standard lattice Z3, are given by

v1 = (1, 0, 1) v2 = (−1, n, 1) v3 = (0, 1, 1)
(4.8)

v4 = (0,−1, 1) v5 = (0, 0, 1)

2 Recall that for the leading example corresponding to F0 = P1 × P1 (trivial fibration), the canonical line bundle of
F0 looks like the A1 ALE space (local K3 surface) fibred over a P1 base space [5].
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and
∑5

i=1 q
a
i = 0 is the Calabi–Yau condition to ensure the cancellation of the first Chern

class c1 = 0. Using equations (3.13) and (3.14), the LG mirror superpotential is obtained by
solving the following constraint equations:

W3(xi) = x1 + x2 + x3 + x4 + x5 (4.9)

x1x2 = e−t1xn4x
2−n
5 (4.10)

x3x4 = e−t2x2
5 . (4.11)

After a direct computation in the patch x5 = 1, we get

fn(x1, x4) = 1 + x1 +
e−t1xn4
x1

+ x4 +
e−t2

x4
= 0. (4.12)

This LG mirror geometry has a naively one-dimensional Riemman surface. This is not a
problem since the LG mirror superpotential encodes all the information of the sigma model
physical Kahler parameters; and one can restore the correct dimension, which is three, by
introducing the irrelevant quadratic term uv in equation (4.9). Thus, the defining equation for
the LG mirror superpotential becomes

W3(xi, u, v) = fn(x1, x4)− uv = 0

= 1 + x1 +
e−t1xn4
x1

+ x4 +
e−t2

x4
− uv = 0 (4.13)

which now describes a non-compact toric Calabi–Yau threefold, moreover, permits us to go
beyond the F0 case used in [11]. Equation (4.12) implies that this geometry has an elliptic
fibration model over C2 with coordinates u and v whose fibre is a Riemann surface

fn(x1, x4) = 0 (4.14)

where for n = 0 we have an elliptic curve in the P2 projective space. To see this, we will
proceed in two steps: first, we consider the LG fields x1 and x4 as two invariant gauge fields
under C∗ action of the P2 in which the fibre is embedded,

x1 = x

z
(4.15)

x4 = y

z

where x, y and z are the homogeneous variables of the P2

(x, y, z) → (λx, λy, λz).

Second, putting equation (4.15) in (4.13) for n = 0

f0(x1, x2) = 1 + x1 +
e−t1

x1
+ x4 +

e−t2

x4
(4.16)

and multiplying by xyz, we get the homogeneous description of the elliptic fibre

f0(x, y, z) = x2y + xy2 + e−t1yz2 + e−t2xz2 + xyz. (4.17)

This equation is a cubic polynomial in P2 whose general form is given by∑
i+j+k=3

aijkx
iyj zk = 0 (4.18)

which can be written in the following Weierstrass form:

y2z = x3 + axz2 + bz3. (4.19)

As we have seen, this form plays an important role in the discussion of the elliptic Calabi–Yau
manifolds involved in F-theory to derive non-perturbative vacua of the type IIB superstring.
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4.2. K3 fibration in F-theory compactifications

4.2.1. LG K3 fibration Calabi–Yau superpotential. Our second example of Calabi–Yau
threefolds is quite similar to the first one, and its treatment will parallel the above discussion.
This example of the model will be given by the LG mirror superpotential with a local toric
Calabi–Yau threefold configuration, which is both elliptic and K3 fibration. Roughly speaking,
the dual field content of the 2D N = 2 linear sigma model is a U(1)5 supersymmetric gauge
theory with ten (φi) matter fields with vector charges qai (a = 0, . . . , 4). The latter are the
quantum charges of the (φi) under the correspondingU(1)5:

q0
i = (−2, 0, 1, 0, 0, 1, 0, 0, 0, 0) q1

i = (0,−2, 1, 0, 0, 0, 0, 1, 0, 0)
q2
i = (1, 1,−2, 1, 1, 0, 0, 0, 0,−2) q3

i = (0, 0, 1,−2, 0, 0, 0, 1, 0, 0)
q4
i = (0, 0, 1, 0,−2, 0, 0, 0, 0, 1)

(4.20)

which are, in some details, the opposite of the affine so(8) Cartan matrix Kai (so(8)):

qai = −Kai(so(8)) i = 1, . . . , 5 a = 0, . . . , 4. (4.21)

The space of the classical vacua of this model is given by the D-flatness equations, namely
10∑
i=1

qai |φi|2 = ρa a = 0, . . . , 4. (4.22)

This space of solutions also has a geometrical realization described by the following toric data
10∑
i=1

qai vi = 0 a = 0, . . . , 4 (4.23)

where

v1 = (1, 1,−1,−1) v2 = (1,−1,−1, 1) v3 = (2,−1,−1,−1)
v4 = (1,−1,−1,−1) v5 = (1,−1, 1,−1) v6 = (0, 3,−1,−1)
v7 = (0,−1,−1, 3) v8 = (0,−1,−1,−1) v9 = (0,−1, 3,−1)
v10 = (0, 0, 0, 0).

(4.24)

Using equations (3.13) and (3.14) and recalling the variables, the mirror theory has
superpotential

W3(xi) =
10∑
i=1

xi = 0 (4.25)

where the xi satisfy the following constraint equations:

x2
3x

2
10 = x1x2x4x5

x2
1 = x3x6

x2
2 = x3x7 (4.26)

x2
4 = x3x8

x2
5 = x3x9.

These constraints can be solved by the monomials

x1 = wz2
1 x2 = wz2

2 x3 = w2 x4 = wz2
3 x5 = wz2

4.
(4.27)

x6 = z4
1 x7 = z4

2 x8 = z4
3 x9 = z4

4 x10 = z1z2z3z4.

Thus, the LG mirror superpotential is

W3 = z4
1 + z4

2 + z4
3 + z4

4 + ψz1z2z3z4 + a0w
2 +w

(
a1z

2
1 + a2z

2
2 + a3z

2
3 + a4z

2
4

) = 0 (4.28)
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where ψ and ai, which are given in terms of ti, are complex parameters defining the complex
structure.

Equation (4.28) is invariant under the C∗ action

(z1, z2, z3, z4, w) → (
λz1, λz2, λz3, λz4, λ

2w
)

(4.29)

and describes a three-dimensional hypersurface in WP4(1, 1, 1, 1, 2) with c1 �= 0. One can
easily restore the Calabi–Yau condition by considering wW3 as the Calabi–Yau hypersurface
which defines a singular three-dimensional toric manifold. This geometry is not only elliptic,
but also K3 fibration. To see this, consider first the w independent terms, namely

Pψ = z4
1 + z4

2 + z4
3 + z4

4 + ψz1z2z3z4. (4.30)

This defines a quartic hypersurface in P3 describing a K3 surface with a complex structure ψ .
Second, we take the large complex structure limit (ψ → ∞). In this appropriate limit, the
equation (4.30) becomes approximately

P∞ = z1z2z3z4 = 0. (4.31)

According to [33], this means that the quartic K3 is now a T2 fibration over the boundary faces
of the toric diagram0 of the P3 projective space

K3 = T 2(R1, R2)× B2 (4.32)

where (R1, R2) are the two radii of the torus T2 and B2 = ∂0 consists of the union of four
triangles of the three-dimensional standard simplex. Note that this torus can degenerate over
the fixed faces of the P3 toric action. One distinguishes two cases:

(1) The torus degenerates to a circle at each edge, which means that one 1-cycle shrinks to
zero size,

Ri = 0 Rj �=i �= 0 i, j = 1, 2. (4.33)

This is the same situation appearing in the large complex structure limit of elliptic curves
involved in the study of non-perturbative vacua of the type IIB string from F-theory
compactifications on elliptic fibration manifolds.

(2) The torus T2 completely degenerates over the endpoints of each triangle, where the two
1-cycles of T2 shrink to zero size:

Ri = 0 i = 1, 2. (4.34)

In these singular limits, one may take the complex structure ψ of K3 as

ψ ∼ V (B2)

R1R2
(4.35)

where V(B2) denotes the volume of the base space B2. In this way, the W3 geometry may
now be regarded as the fibring elliptic K3 surface (4.30), in which the fibre has a vanishing
first Chern class (i.e. c1 = 0) over a base space parametrized by w. Our W3 Calabi–Yau
geometry has the following nice features:

(1) It extends the geometry of the W2, studied in section 3, to∑
i

wiPi(z1, z2, z3, z4) = 0 (4.36)

for an elliptic Calabi–Yau threefold. In other words, instead of having a curve in two-
dimensional projective spaces (as in the elliptic K3 surface (3.22)), we now have a surface

P0(z1, z2, z3, z4) = 0

in the three-dimensional projective space P3, where thew exponents are exactly the Dynkin
index of affine so(8) Lie algebra.
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(2) W3 gives a new realization of so(8) Lie algebra in terms of the Calabi–Yau threefolds.
This toric realization is closely related to the standard tetravalent geometry [36], which
may be viewed as a higher geometry of the trivalent and bivalent geometries used in the
context of geometric engineering of QFT in four dimensions [5]. The latter is described
by the following monomials

1, z2
1, z

2
2, z

2
3, z

2
4, z1z2z3z4 (4.37)

where this geometry may be used to extend the Tp,q,r singularity to Tp,q,r,t by considering
four intersecting SU chains.

(3) The complex structure determined by the complex parameters ψ and ai might be used to
define a moduli space of SO(8) bundle on quartic K3.

4.2.2. D = 6 N = 1 SO(8) gauge theory. Having introduced the geometric background
space W3, we will now discuss the corresponding gauge theory if one considers the F-theory
compactification. As is well known, the F-theory on K3 fibration Calabi–Yau manifolds is
intimately related to N = 1 string models. In particular, six-dimensional compactifications
of F-theory on the Calabi–Yau threefolds, where these geometries encode the information
about the physical data of N = 1 string theories including the enhanced gauge symmetries, the
perturbative matter fields and the non-perturbative dynamics corresponding to small instanton
singularities [42] are related. Roughly speaking, mimicking the analysis in [22, 23], F-theory
on singular W3 (4.27) leads to a pure N = 1 Yang–Mills theory in six dimensions. The
corresponding gauge group associated with this W3 geometry is given by the SO(8) gauge
group determined by the intersection matrix of the blown-up toric divisors (4.20). Moreover,
since the perturbative gauge symmetries in heterotic superstring models stem only from the
classification of singularities of W2(ADE) fibre space, studied in section 2, this SO(8) gauge
model may be related to non-perturbative dynamics.

5. On ADE Calabi–Yau fourfold superpotentials

In this section we want to extend the previous analysis to higher dimensional elliptic Calabi–
Yau geometries. In particular, we will consider (n + 2)-dimensional elliptic Calabi–Yau’s,
where they will be realized as n-dimensional elliptic Calabi–Yau manifolds over two complex-
dimensional base spaces. They may be viewed as a few extensions of non-compact Calabi–Yau
threefolds (4.1). These geometries may be expressed in the following form:

f (x1, . . . , xn+1) = uv. (5.1)

In other words, instead of having a Riemann surface as in the case of Calabi–Yau threefolds,
we now have an n-dimensional Calabi–Yau fibre

f (x1, . . . , xn+1) = 0. (5.2)

These extended geometries may play a crucial role in the understanding of the lower
dimensional non-perturbative superstring theories.

From the F-theory compactification point of view, we will restrict ourselves to a particular
case corresponding to elliptic Calabi–Yau fourfolds

f (x1, x2, x3) = uv. (5.3)

Before discussing the 2D N = 2 sigma model construction of these manifolds, it is useful to
review some basic facts about the different constructions of the Calabi–Yau fourfolds. The
latter can have realizations of many types:
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1. The orbifold C4

Z4
:

zj → izj j = 1, . . . , 4. (5.4)

2. The hyper-Kahler quotient in terms of two-dimensional field theory with eight supercharges
in the presence of charged hypermultiples.

3. The ADE hypersurfaces in C5 considered in [14] in the context of derivations of two-
dimensional superconformal field theories from singular limits of type IIA superstring
compactifications.

Here we are interested in elliptic ADE fourfold hypersurfaces having elliptic K3 toric
fibration, with ADE singularities, over two-dimensional base spaces. A priori there are
different ways one may follow to give the corresponding 2D N = 2 linear sigma model
construction. A naive way to do this is to consider these geometries as a moduli space of two
orthogonal models described by 2D N = 2 supersymmetric field theories. In this method, it is
possible to see the elliptic ADE N = 2 linear sigma model, studied in section 3, as a fibre and
the other model, whose target space is a two-complex-dimensional space, as a base. However,
this method may bring extra parameters in the moduli space of ADE Calabi–Yau fourfold
hypersurfaces. A tricky method to overcome this problem is to use the previous elliptic ADE
(K3) N = 2 linear sigma model with extra chiral fields, corresponding to the two complex-
dimensional base spaces of the Calabi–Yau fourfolds. Roughly speaking, we consider the
previous U(1)r+1 linear sigma model but with (r + 8) chiral fields φj (j = 1, . . . , r + 8) with
matrix chargeQa

j . The latters are given by

Qa
j = (

qai , q
a
r+6, q

a
r+7, q

a
r+8

)
i = 1, . . . , r + 5, a = 1, . . . , r + 1 (5.5)

where qai are exactly the matrix charges of (r + 5) chiral fields φi of U(1)r+1 linear sigma
model construction of ADE elliptic K3 and

(
qar+6, q

a
r+7, q

a
r+8

)
are the quantum charges of the

extra fields, under U(1)r+1 symmetry, which will be specified later on. The condition under
which the gauge system flows in the infrared to 2D N = 2 superconformal field theory is

r+8∑
j=1

Qa
j = 0 a = 0, 1, . . . , r. (5.6)

However, the Calabi–Yau condition
∑r+5

i=1 q
a
i = 0 for the ADE elliptic K3 requires that

qar+6 + qar+7 + qar+8 = 0 ∀a. (5.7)

The vacuum energy of this N = 2 sigma model is given by the D-flatness equations
r+8∑
j=1

Qa
j |φj |2 = ρa a = 0, . . . , r (5.8)

where this space of solutions, up to the identifications imposed by the action of gauge group,
has a toric realization. This is represented by (r + 8) vertices Vj (j = 1, . . . , r + 8) of the
standard lattice Z5 satisfying the following toric relations:

r+8∑
j=1

Qa
jVj = 0 a = 0, . . . , r. (5.9)

Using the conventional notation Vj = VjC, C = 1, . . . , 5, the above toric data (5.9) may be
split as

r+5∑
i=1

qai ViC′ = 0 C′ = 1, 2, 3 (5.10)
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qar+6Vr+6C′ + qar+7Vr+7C′ + qar+8Vr+8C′ = 0 C′ = 1, 2, 3 (5.11)
r+8∑
j=1

Qa
jVj4 = 0 (5.12)

r+8∑
j=1

Qa
jVj5 = 0. (5.13)

Equation (5.10) is nothing but equation (3.18) where

ViC′ = vi = (ni,mi, si) C′ = 1, 2, 3. (5.14)

To write down the LG mirror superpotential, we follow the same analysis used in section 3.
This is obtained in terms of new gauge invariant monomials:

xj =
5∏
C=1

x
VjC
C . (5.15)

Thus the ADE mirror superpotentials are
r+8∑
j=1

aj

5∏
C=1

x
VjC
C = 0. (5.16)

However, to work out the explicit form of this equation, we have to solve the toric constraint
equations (5.10)–(5.13). A solution of these toric data is given by

Vi = (ni,mi, si , 0, 0) i = 1, . . . , r + 5 (5.17)

Vr+6 = (0, 0, 0, α, α′) (5.18)

Vr+7 = (0, 0, 0, β, β ′) (5.19)

Vr+8 = (0, 0, 0, γ , γ ′) (5.20)

where α, β, γ , α′, β ′ and γ ′ are six integers satisfying

qar+6α + qar+7β + qar+8γ = 0 (5.21)

qar+6α
′ + qar+7β

′ + qar+8γ
′ = 0. (5.22)

For later use, we choose a special case where(
qar+6, q

a
r+7, q

a
r+8

) = (1,−2, 1) ∀a. (5.23)

In this way, a naive solution of equations (5.21)–(5.22) is given by

(α, β, γ ) = (1, 1, 1) (5.24)

and

(α′, β ′, γ ′) = (−1, 0, 1). (5.25)

Taking this special case, we get the following LG mirror superpotential
r+5∑
i=1

aix1
ni x2

mi x3
si + x4

(
ar+6

x5
+ ar+7 + ar+8x5

)
= 0. (5.26)

However, using equations (5.8) and (5.23), the mirror map for qai = 0 (i = 1, . . . r + 5),
breaking the U(1)r+1 symmetry to U(1), implies that the LG fields corresponding to the mirror
base geometry are constrained by

ar+6

x5
+ ar+7 + ar+8x5 = 0. (5.27)
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This means that the mirror base geometry is zero-dimensional space. From this requirement,
the mirror geometry of ADE hypersurfaces, obtained after introducing the non-dynamical
fields, is given by

r+5∑
i=1

aix1
ni x2

mi x3
si = uv (5.28)

where
∑r+5

i=1 aix1
ni x2

mi x3
si = 0 is the equation of the ADE elliptic K3 surfaces. Finally, if we

consider F-theory compactifications on these elliptic hypersurfaces, we obtain D = 4 N = 1
ADE gauge theories with non-matter.

6. Conclusion

In this paper, we have studied the Landau–Ginzburg theory mirror to the 2D N = 2 gauged
linear toric sigma model. We have derived new classes for elliptic Calabi–Yau superpotentials
of the Landau–Ginzburg theories. The latter play a crucial role in string/brane physics. In
the Calabi–Yau threefold case, we have considered two examples of the mirror symmetry
for the toric sigma model. First, we have given the mirror theory of the linear sigma model
on the canonical line bundle over the Hirzebruch surfaces Fn, recovering the leading example
of F0 studied in the context of the mirror action of Lagrangian D-branes [11]. In this case,
we have shown that the mirror geometry is an elliptic Calabi–Yau threefold whose fibre is
a Riemann surface. Second, we have found a special elliptic and K3 fibration Calabi–Yau
threefold extending the elliptic K3, considered in the geometric engineering of 4D N = 2
superconformal field theory, to an elliptic Calabi–Yau threefold with affine so(8) Lie algebra
Mori vectors. Moreover, this geometry gives a new N = 1 SO(8) pure Yang–Mills theory
in six dimensions from the F-theory compactification which may be associated with non-
perturbative gauge symmetry in the heterotic string picture [42]. Finally, we have used the
interplay between toric geometry and the gauged linear sigma model to derive an intuitive
algebraic realization for the mirror superpotentials associated with ADE Calabi–Yau fourfold
hypersurfaces.
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